Preliminary Investigations on the Health Benefits of Citrullus colocynthis (L.) Schrad Seeds

Main Article Content

A. A. Olushola-Siedoks
U. E. Igbo
G. O. Asieba
B. I. Ojo
T. O. Akinola
C. C. Igwe

Abstract

Aims: To evaluate the composition of Citrullus colocynthis (L.) Schrad seed as a means of assessing its health and possible therapeutic benefits.

Study Design:  Test-tube Lab Research.

Place and Duration of Study: Federal Institute of Industrial Research, Oshodi, Nigeria, between June 2018 and March 2019.

Methodology: Intact dehulled Citrullus colocynthis (L.) Schrad seeds were analyzed for their proximate and elemental content using standard methods and atomic absorption spectroscopy, respectively. The seed oil was extracted with n-hexane via cold maceration and the extracted oil was analyzed for its physiochemical properties. The fatty acid profile was determined using gas chromatography-mass spectrometry.

Results: The proximate analysis values were determined to be 6.51%, 51.46%, 21.62%, 13.26%, 3.76% and 3.39% for the moisture, crude fat, crude protein, crude fiber, ash and total carbohydrate content respectively. Results of the elemental analysis show the seed contains; 3653.0322 mg/kg Na, 6639.7818 mg/kg K, 2329.0612 mg/kg Ca, 235.6057 mg/kg Fe, 5252.5884 mg/kg Mg, 27.9056 mg/kg Zn and 7.0068 mg/kg Pb. The predominant fatty acid detected with an area percentage of 20.31 was cis-11-octadecenoic acid. Other fatty acids detected include cis-9, cis-12-octadecadienoic acid, cis-9-octadecenoic, hexadecanoic acid, octadecanoic acid and icosanoic acid. Squalene, a biosynthetic precursor of cholesterol, was detected with an area percentage of 8.54.

Conclusion: The evaluation of the compositional data provided evidential support for its beneficial health impact particularly in regards to nutritional and cardio-vascular health.

Keywords:
Citrullus colocynthis seeds, elemental analysis, fatty acid profile, physicochemical properties, proximate analysis.

Article Details

How to Cite
Olushola-Siedoks, A. A., Igbo, U. E., Asieba, G. O., Ojo, B. I., Akinola, T. O., & Igwe, C. C. (2019). Preliminary Investigations on the Health Benefits of Citrullus colocynthis (L.) Schrad Seeds. European Journal of Nutrition & Food Safety, 10(3), 187-198. https://doi.org/10.9734/ejnfs/2019/v10i330112
Section
Original Research Article

References

USDA. Agricultural research service, national plant germplasm system. germplasm resources information network (grin-taxonomy). National Germplasm Resources Laboratory, Beltsville, Maryland; 2019.
Available:https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?id=10674
(Accessed 03 May 2019)

Uruakpa FO, Aluko RE. Heat-induced gelation of whole egusi (Colocynthis citrullus L.) seeds. Food Chem. 2004;87: 349-354.
Available:https://www.deepdyve.com/lp/elsevier/heat-induced-gelation-of-whole-egusi-colocynthis-citrullus-l-seeds-mKIK3TGqag
(Accessed 20 February 2019)

Hussain AL, Rathore HA, Sattar MZ, Chatha SA, Sarker SD, Gilani AH. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J Ethnopharmacol. 2014;155(1):54-66.
Available: 10.1016/j.jep.2014.06.011
(Accessed 11 January 2019)

Encyclopaedia Britannica. Inc. Cucurbitaceae; 2017.
Available: https://www.britannica.com/plant/Cucurbitaceae
(Accessed 06 May 2019)

Gill NS, Kaur S, Arora R, Bali M. Screening of antioxidant and antiulcer potential of Citrullus colocynthis methanolic seed extract. Res J Phytochem. 2011;5(2): 98-106.
Available: 10.3923/rjphyto.2011.98.106
(Accessed 10 February 2019)

Benariba N, Djaziri R, Bellakhdar W, Belkacem N, Kadiata M, Malaisse WJ, Sener A. Phytochemical screening and free radical scavenging activity of Citrullus colocynthis seeds extracts. Asian Pac J Trop Biomed. 2013;3(1):35-40.
Available: 10.1016/S2221-1691(13)60020-9
(Accessed 19 March 2019)

Huseini HF, Darvishzadeh F, Heshmat R, Jafariazar Z, Raza M, Larijiani B. The clinical investigation of Citrullus colocynthis (L.) Shrad fruit in treatment of Type II diabetic patients: A randomized, double-blind, placebo-controlled clinical trial. Phytother Res. 2009;23(8):1186-1189.
DOI: 10.1002/ptr.2754
(Accessed 11 January 2019)

Telli A, Esnault M, Ould EI Hadj Khelil A. An ethnopharmacological survey of plants used in traditional diabetes treatment in south-eastern Algeria (Ouargla province). Journal of Arid Environments. 2016;127: 82-92.
DOI: 10.1016/j.jaridenv.2015.11.005
(Accessed 28 January 2019)

Marzouk B, Marzouk Z, Décor R, Edziri H, Haloui E, Fenina N, Aouni M. Antibacterial and anticandidal screening of Tunisian Citrullus colocynthis Schrad from Medenine. J Ethnopharmacol. 2009;125 (2):344-349.

DOI: 10.1016/j.jep.2009.04.025
(Accessed 11 January 2019)

Marzouk B, Marzouk Z, Haloui E, Fenina N, Bouraoui A, Aouni M. Screening of analgesic and anti-inflammatory activities of Citrullus colocynthis from southern Tunisia. J Ethnopharmacol. 2010;128 (1):15-19.
Available: 10.1016/j.jep.2009.11.027
(Accessed 11 January 2019)

Roy RK, Mayank T, Dixit VK. Effect of Citrullus colocynthis on hair growth in albino rats. Pharmaceutical Biology. 2007; 45(10):739-744.
Available: 10.1080/13880200701585709
(Accessed 10 January 2019)

Abdul Rahuman A, Venkatesan P. Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. Parasitol Res. 2008;103:133.
DOI: 10.1007/s00436-008-0940-5
(Accessed 10 February 2019)

Giwa SO, Abdullah CL, Adam NM. Investigating “Egusi” (Citrullus colocynthis L.) Seed oil as potential Biodiesel Feedstock. Energies. 2010;3(4): 607-618.

Achu MB, Fokou E, Tchiegang C, Fotso M, Tchouanguep FM. Nutritive value of some Cucurbitaceae oilseeds from different regions in Cameroon. Far. Afr J Biotechnol. 2005;4(11):1329-1334.
Available:https://www.ajol.info/index.php/ajb/article/view/71373
(Accessed 12 January 2019)

Ojieh G, Oluba O, Ogunlowo Y, Adebisi K, Eidangbe G, Orole R. Compositional studies of Citrullus ianatus (Egusi melon) seed. The Internet Journal of Nutrition and Wellness. 2007;6:1.
Available:https://print.ispub.com/api/0/ispub-article/6721
(Accessed 11 January 2019)

Jarret LR, Levy IJ. Oil and fatty acid content in seed of Citrullus lanatus Schrad. J Agric Food Chem. 2012;60(20):5199-5204.
DOI: 10.1021/jf300046f
(Accessed 11 January 2019)

Akoh CC, Nwosu CV. Fatty acid composition of melon seed oil lipids and phospholipids. J Am Oil Chem Soc. 1992; 69:314-316.
DOI: 10.1007/BF02636057
(Accessed 11 January 2019)

Gurudeeban S, Satyavani K, Ramanathan T. Bitter Apple (Citrullus colocynthis): An overview of chemical composition and biomedical potentials. Asian Journal of Plant Sciences. 2010;9(7):394-401.

DOI: 10.3923/ajps.2010.394.401

(Accessed 11 January 2019)

Johnson GH, Fritsche KL. Effect of dietary linoleic acid on markers of inflammation in healthy persons: A systematic review of randomized controlled trials. J Acad Nutr Diet. 2012;112:1029-1041,1041:1021-1015.
DOI: 10.1016/j.jand.2012.03.029
(Accessed 11 January 2019)

Fritsche KL. The science of fatty acid and inflammation. Adv Nutr. 2015;6(3):293S-301S.
DOI: 10.3945/an.114.006940
(Accessed 11 January 2019)

Mensink RP, Katan MB. Effect of dietary fatty acids on serum lipids and lipoproteins: A meta-analysis of 27 trials. Arterioscler Thromb. 1992;12(8):911-919.
Available:https://www.ahajournals.org/doi/pdf/10.1161/01.ATV.12.8.911
(Accessed 08 January 2019)

Mensink RP, Zock PL, Kester AD, Katan MB. Effect of dietary fatty acids and carbohydrate on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77 (5):1146-1155.
Available:https://doi.org/10.1093/ajcn/77.5.1146
(Accessed 11 January 2019)

Fujii C, Kawai T, Azuma K, Oguma Y, Katsukawa F, Hirose H, Tanaka K, Meguro S, Matsumoto H, Itoh H. Relationships between composition of major fatty acids and fat distribution and insulin resistance in Japanese. Journal of Diabetes Research. 2017;1567467.
DOI: 10.1155/2017/1567467
(Accessed 11 January 2019)

Miura K, Stamler J, Nakagawa H, Elliott P, Ueshima H, Chan Q, Brown IJ, Tzoulaki I, Saitoh S, Dyer AR, et al. Relationship of dietary linoleic acid to blood pressure: The international study of macro-micronutrients and blood pressure study. Hypertension. 2008;52(2): 408-414.
DOI:10.1161/HYPERTENSIONAHA.108.112383
(Accessed 11 January 2019)

De Caterina R, Liao JK, Libby P. Fatty acid modulation of endothelial activation. Am J Clin Nutr. 2000;71(1):213S-223S. DOI: 10.1093/ajcn/71.1.213S
(Accessed 13 January 2019)

Connor WE, Lin DS, Thomas G Ey F, Deloughery T, Zhu N. Abnormal Phospholipid molecular species of erythrocyte in sickle cell anemia. J Lipid Res. 1997;38(12):2516-2528.
Available:http://www.jlr.org/content/38/12/2516.abstract
(Accessed 13 January 2019)

Marzouki ZM, Khoja SM. Plasma and red blood cells membrane lipid concentration of sickle cell disease patients. Saudi Med J. 2003;24(4):376-379.
Available:https://www.ncbi.nlm.nih.gov/pubmed/12754538
(Accessed 08 January 2019)

Schrier SL, Centis F, Verneris M, Ma L, Angelucci E. The role of oxidant injury in the pathophysiology of human thalassemias. Redox Rep. 2003;8(5):241–245.
Available:https://doi.org/10.1179/135100003225002835
(Accessed 13 January 2019)

AOAC. Association of Official Analytical Chemists. official methods of analysis. 20th ed. Rockville, MD: Association of Official Analytical Chemists International; 2016.

Egan H, Kirk RS, Sawyer R, Pearson D. pearson’s chemical analysis of foods. 8th ed. Edinburgh; Churchill Livingstone. 1981. 535-538.

Wang J, Wu W, Wang X, Wang M, Wu F. An effective GC method for the fatty acid composition in silkworm pupae using a two-step methylation process. J Serb Chem Soc. 2015;80(1):9-20.
Available:https://www.shd.org.rs/JSCS/Vol80/No1/02_6000_4692.pdf
(Accessed 04 February 2019)

Akpambang VO, Amoo IA, Izuagie AA. Comparative compositional analysis on two varieties of melon (Colocynthis citrullus and Cucumeropsis edulis) and a variety of almond (Prunus amygdalus). Res J Agri Bio Sci. 2008;4(6):639-642.

Nehdi IA, Sbihi H, Tan CP, Al-Resayes SI. Evaluation and characterisation of Citrullus colocynthis (L.) schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil. Food Chem. 2013; 136(2):348-353.
DOI: 10.1016/j.foodchem.2012.09.009
(Accessed 06 May 2019)

Igwenyi IO. Phytochemical analysis and vitamin composition of Irvigna gabonesis and Citrullus colocynthis. IOSR-JPBS. 2014;9(3):37-40.
DOI: 10.9790/3008-09353740
(Accessed 11 January 2019)

Duke JA. Citrullus colocynthis (L.) Schrad. Handbook of Energy Crops; 1983. Available:https://www.hort.purdue.edu/newcrop/duke_energy/Citrullus_colocynthis.html
(Accessed 17 May 2019)

NCI Dictionary of Cancer Terms. U.S: National Cancer Institute; 2019.
Available:https://www.cancer.gov/publications/dictionaries/cancer-terms/def/nutrient-dense-food
(Accessed 15 March 2019)

US. Department of health and human services and US. department of agriculture. 2015-2020 Dietary Guidelines for Americans. 8th ed, US: Office of disease prevention and health promotion; 2015.
(Accessed 15 March 2019)
Available:https://health.gov/dietaryguidelines/2015/guidelines/

FDA, Food and Drug Administration. FDA Vitamins and Minerals Chart. U.S.: U.S. Food and Drug Administration; 2015-2020.
Available:https://www.accessdata.fda.gov/scripts/InteractiveNutritionFactsLabel/factsheets/Vitamin_and_Mineral_Chart.pdf
(Accessed 16 March 2019)

Jahner-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. 2012;5 (1):i3-i14.
DOI: 10.1093/ndtplus/sfr163
(Accessed 11 January 2019)

Kam K. Beware of the salt shockers. U.S.: WebMD.
Available: https://www.webmd.com/food-recipes/features/beware-of-the-salt-shockers
(Accessed 16 May 2019)

Nutrition Australia. Nuts and health. Australia: Nutrition Australia; 2012. Available:www.nutritionaustralia.org/national/frequently-asked-questions/general-nutrition/nuts-and-health
(Accessed 13 May 2019)

World Health Organisation. Lead poisoning and health. World Health Organisation; 2019.
Available:https://www.who.int/news-room/fact-sheet/detail/lead-poisoning-and-health
(Accessed 10 May 2019)

Food Safety Authority of Ireland. Toxicology factsheet series: Mercury, lead, cadmium, tin and arsenic in food. Dublin: Food Safety Authority of Ireland. 2009;1:1-13.
Available:https://www.fsai.ie/WorkArea/DownloadAsset.aspx?id=8412
(Accessed 23 May 2019)

World Health Organization. Joint FAO/WHO Food standards programmes. Codex Alimentarius Commission 40th Session CICG, Geneva, Switzerland 17-22 July 2017. Report of the 11th Session of the codex committee on contaminants in foods, Rio de Janeiro, Brazil: 34-35. Geneva, Switzerland: World Health Organization; 2017.
Available: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-11%252FREPORT%252FREP17_CFe.pdf
(Accessed 15 May 2019)

Sawaya WN, Daghir NJ, Khan P. Chemical characterisation and edibility of the oil extracted from Citrullus colocynthis seeds. Journal of Food Science. 1983;48:104-106.
Available:10.1111/j.1365-2621.1983.tb14799.x
(Accessed 13 March 2019)

World Health Organization. Codex Alimentarius. International Food Standards. World health Organization. Standard for edible fats and oils not covered by individual standards. Codex Stan 19-1981; 1981.

Obasi NA, Ukadilonu J, Eze E, Akubugwo EI, Okorie UC. Proximate composition, extraction, characterisation and comparative assessment of coconut (Cocos nucifera) and Melon (Colocynthis citrullus) seeds and seed oils. Pakistan Journal of Biological Sciences. 2012;15(1): 1-9.
DOI: 10.3923/pjbs.2012.1.9
(Accessed 11January 2019)

National Center for Biotechnology Information. PubChem database. Cis-Vaccenic acid, CID=5282761. Rockville: U.S. National Library of Medicine; 2012. Available:https://pubchem.ncbi.nlm.nih.gov/compound/5282761
(Accessed 20 May 2019)

Djousse L, Matthan NR, Lichtenstien AH, Gaziano JM. Red blood cell membrane concentration of cis-palmitoleic and cis-vaccenic acids and risk of coronary heart disease. Am J Cardiol. 2012;110(4):534-544.
DOI: 10.1016/j.amjcard.2012.04.027
(Accessed 13 March 2019)

Djousse L, Matsumoto C, Hanson NQ, Weir NL, Tsai MY, Gaziano JM. Plasma cis-vaccenic acid and risk of heart failure with antecedent coronary heart disease in male physicians. Clin Nutr. 2014;33(3): 478-482.
DOI: 10.1016/j.clnu.2013.07.001
(Accessed 13 March 2019)

Awad AB, Herrmann T, Fink CS, Horvath PJ. 18:1 n7 fatty acid inhibit growth and decrease inositol phosphate release in HT-29 cells compared to n9 fatty acids. Cancer Lett. 1995;91(1):55-61.
Available:https://doi.org/10.1016/0304-3835(95)03725-c
(Accessed 13 March 2019)

Aimola IA, Inuwa HM, Nok AJ, Mamman AI, Bieker JJ. Cis-vaccenic acid induces differentiation and up-regulates gamma globin synthesis in K562, Jk1 and transgenic mice erythroid progenitor stem cells. Eur J Pharmacol. 2016;776:9-18.
DOI: 10.1016/j.ejphar.2016.02.041
(Accessed 20 March 2019)

Harris WS, Mozaffarian D, Rimm E, Kris-Etherton P, Rudel LL, Appel LJ, Engler MM, Engler MB, Sacks F. Omega-6 fatty acids and risk for cardiovascular disease. Circulation. 2009; 119(6):902-907.
DOI:10.1161/CIRCULATIONAHA.108.191627
(Accessed 11 January 2019)

Virtanen JK, Wu JHY, Voutilainen S, Mursu J, Tuomainen T. Serum n-6 polyunsaturated fatty acids and risk of death: the Kuopio Ischaemic Heart disease risk factor study. Am J Clin Nutr. 2018;107 (3):427-435.
DOI: 10.1093/ajcn/nqx063
(Accessed 11 January 2019)

Lopez S, Bermudez B, Pacheco YM, Ortega A, Varela LM, Abia R, et al. Olives and olive oil in health and disease prevention. Academic press. 2010;1385-1393.

Palomer X, Pizarro-Delgado J, Barroso E, Vazquez-Carrera M. Palmitic and oleic acid: The yin and yang of fatty acids in Type 2 Diabetes Mellitus. Trends Endocrinol Metab. 2018;29(3):178-190.
DOI: 10.1016/j.tem.2017.11.009
(Accessed 20 March 2019)

Mu L, Mukamal KJ, Naqvi AZ. Erythrocyte saturated fatty acids and systemic inflammation in adults. Nutrition. 2014;30 (11-12):1404-1408.
Available:https://doi.org/10.1016/j.nut.2014.04.020
(Accessed 20 March 2019)

Zong G, Li Y, Wanders AJ, Alssema AJ, Zock PL, Willett WC, Hu FB, Sun Q. Intake of individual saturated fatty acids and risk of coronary heart disease in US men and women: two prospective longitudinal cohort studies. BMJ. 2006;355:i5796.
DOI: 10.1136/bmj.i5796
(Accessed 03 March 2019)

Kleber ME, Delado GE, Dawczynski C, Lorkowski S, Marz W, Von Schacky C. Saturated fatty acids and mortality in patients referred for coronary angiography- The Ludwigshafen Risk and Cardiovascular Health study. J Clin Lipidol. 2018;12(2):455-463.e3.
DOI: 10.1016/j.jacl.2018.01.007
(Accessed 04 March 2019)

Grant WB. Dietary links to Alzheimer’s disease: 1999 update. J Alzheimers Dis. 1999;1(4-5):197-201.
Available:https://www.ncbi.nlm.nih.gov/pubmed/12214118
(Accessed 03 March 2019)

Ebbesson SO, Tejero ME, Lopez-Alvarenga JC, Harris WC, Ebbesson LO, Devereux RB, MacCluer JW, Wenger C, Laston S, Fabsitz RR, Howard BV, Comuzzie AG. Individual saturated fatty acids are associated with different components of insulin resistance and glucose metabolism: the GOCADAN study. Int J Circumpolar Health. 2010;69(4):344-351.
Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307791/
(Accessed 03 March 2019)

Lemaitre RN, Fretts AM, Sitlani CM, Biggs ML, Mukamal K, King IB, Song X, Djousse L, Siscovick DS, McKnight B et al. Plasma phospholipid very-long-chain saturated fatty acids and incident diabetes in older adults: the Cardiovascular Health Study. Am J Clin Nutr. 2015;101(5):1047-1054.
DOI: 10.3945/ajcn.114.101857
(Accessed 11 January 2019)

Lin JS, Dong HL, Chen GD, Chen ZY, Dong XW, Zheng JS, Chen YM. Erythrocyte Saturated fatty acids and incident type 2 diabetes in Chinese men and women: a prospective cohort study. 2018;10(10):pil:E1393.
DOI: 10.3390/nu10101393
(Accessed 11 January 2019)

Hayes KC. Dietary fat and heart health: in search of the ideal fat. Asian Pacific J Clin Nutr. 2002;11: 394-400.
Available:https://onlinelibrary.wiley.com/doi/full/10.1046/j.1440-6047.11.s.7.13.x
(Accessed 11 January 2019)

Amarowicz R. Squalene: A natural antioxidant. Eur J Lipid Sci Technol. 2009; 111:411-412.
DOI: 10.1002/ejlt.200900102
(Accessed 11 March 2019)

Waterman E, Lockwood B. Active components and clinical applications of olive oil. Altern Med Rev. 2007;12(4):331-342.
Available:https://www.ncbi.nlm.nih.gov/pubmed/18069902
(Accessed 03 March 2019)