Coronavirus and Nutrition: An Approach for Boosting Immune System-A Review

Main Article Content

Lusamaki Mukunda François
Wabi Bajo Nagessa
Buhendwa Mirindi Victor
Mosisi Moleka
Irene Stuart Torrié De Carvalho


The global health crisis as a result of covid-19 demands fast and efficient response from global health care system. The evidence of nutrition-based interventions for viral diseases from past clinical trials, and its importance for optimizing the host immune response was reviewed in this paper. The immune system has involved in the protection of the host from pathogenic organisms, communicating molecules and functional responses. It is a known factor that nutrition plays key role in supporting the immune system as the role of nutrients feature prominently in a number of scientific literatures. Several clinical data showed that micronutrients like vitamins, including vitamins A, B6, B12, C, D, E and folic acid; trace elements including, zinc, iron, selenium, magnesium, copper and the omega-3 fatty acids like EPA & DHA play a major role in supporting the immune system. Inadequate intake of these nutrients is widespread resulting to a decreasing in resistance to infections and an increasing in diseases burden. Regarding the COVID-19 pandemic, the roles of nutrition for strengthening immune system for the patients to have strong resistant against the virus is also considered in this paper. It is believed that COVID-19 increases its severity or a host is susceptible to infectious disease once the immune system does not function optimally.

Nutrition, micronutrient, immune system, coronavirus.

Article Details

How to Cite
François, L. M., Nagessa, W. B., Victor, B. M., Moleka, M., & Carvalho, I. S. T. D. (2020). Coronavirus and Nutrition: An Approach for Boosting Immune System-A Review. European Journal of Nutrition & Food Safety, 12(9), 72-86.
Review Article


Liang JQ, Gilat RM, Eric D, Haunschild BS, Tauro BS, Brian J, Cole MD, et al. N-linked glycosylation of the membrane protein ectodomain regulates infectious bronchitis virus-induced ER stress response, apoptosis and pathogenesis. Virology. 2019;531:48–56.
DOI: 10.1016/j.virol.2019.02.017

Gennaro FD, Damiano P, Marotta C, Racalbuto V, Veronese N, Smith L, Antunes M. Coronavirus diseases (COVID-19) current status and future perspectives: A narrative review. Int. J. Environ. Res. Public Health. 2020;17:8.
DOI: 10.3390/ijerph17082690

WHO (World Health Organization). Director- General’s remarks at the media briefing on 2019- nCoV; 2020.
Available: 2020

Jiang S, Xia S, Lu L. A novel coronavirus (2019-nCoV) causing pneumonia-associated respiratory syndrome. Cell. Mol. Immunol; 2020.

Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020;1–10.
DOI: 10.1001/jamainternmed.2020.0994

Chen WF, Zhang C, Ju ZY, He Z. Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies. Zhonghua shao shang za zhi= Chinese Journal of Burns. 2020;36:E005-E005.

Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18(4):844–847.
DOI: 10.1111/jth.14768

Cooper EL, Ma MJ. Understanding nutrition and immunity in disease management. J. Tradit. Complement. Med. 2017;7(4):386–391.
DOI: 10.1016/j.jtcme.2016.12.002

Derbyshire E, Delange J. COVID-19: Is there a role for immunonutrition, particularly in the over 65s? BMJ Nutr. Prev. Heal. 2020;bmjnph-2020-000071.
DOI: 10.1136/bmjnph-2020-000071

Grimble RF. Immunonutrition – Nutrients which influence immunity: Effect and mechanism of action. E. Spen. Eur. E. J. Clin. Nutr. Metab. 2009;4(1):e10–e13.
DOI: 10.1016/j.eclnm.2008.07.015

Bonham M, O’Connor JM, Hannigan BM, Strain JJ. The immune system as a physiological indicator of marginal copper status? Br. J. Nutr. 2002;87(5):393–403.
DOI: 10.1079/bjn2002558

Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol. 2015;7(5):1–20.
DOI: 10.1101/cshperspect.a016303

Ibrahim KS, El-Sayed EM. Potential role of nutrients on immunity. Int. Food Res. J. 2016;23(2):464–474.

Chandra RK. Impact of nutritional status and nutrient supplements on immune responses and incidence of infection in older individuals. Ageing Res. Rev. 2004;3(1):91–104.
DOI: 10.1016/j.arr.2003.08.004

Weill B, Batteux F. Immunopathologie et réactions inflammatoires. De Boeck Supérieur; 2003.

Calder PC, Carr AC, Gombart AF, Eggersdorfer M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients. 2020;12(4):1–10.
DOI: 10.3390/nu12041181

Nieman DC, Buckley KS, Henson DA, Warren BJ, Suttles J, Ahle JC, et al. Fagoaga. Immune function in marathon runners versus sedentary controls. Med. Sci. Sport. Exerc. 1995;27(27):986-992.

Barazzoni C, Bischoff S, Breda C, Wickramas J, Kremlin K, Zeljko et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clinical Nutrition; 2020.

Caccialanza R, Alessandro L, Federica LMD. Early nutritional supplementation in non-critically ill patients hospitalized for the COVID-19: Rationale and feasibility of a shared pragmatic protocol. Nutrition; 2020.
DOI: 10.1016/j.nut.2020.110835

Cena H, Chieppe M. Coronavirus disease (COVID-19 - SARS-CoV-2) and nutrition, is the Italian infection suggesting a connection? Front. Immunol. 2020;11:1–6.
DOI: 10.3389/fimmu.2020.00944

Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020;92: 479–90.

Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP. Rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus infected pneumonia (standard version). Mil Med Res. 2020;7(4):2020.

Wong WC, Watson DL. Immunomodulatory effects of dietàry whey proteins in mice. J. Dairy Res. 1995:62(2):359–368.
DOI: 10.1017/S0022029900031058

Sfeir RM, Dubarry M, Boyaka PN, Rautureau M, Tomé D. The mode of oral bovine lactoferrin administration influences mucosal and systemic immune responses in mice. J. Nutr. 2004;134(2):403–409.
DOI: 10.1093/jn/134.2.403

Geiger R, Jan C, Rieckmann N, Zamboni TW, Lanzavecchia AF. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 2016;167(3):829-842.e13.
DOI: 10.1016/j.cell.2016.09.031

National Academy of Sciences (NASc). Military Strategies for Sustainment of Nutrition and Immune Function in the Field at Academies Press. 1999;722.
Available: .html

Newsholme P. Glutamine metabolism: Nutritional and clinical significance why is l-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J. Nutr. 2001;131: 2515–2522.

Maqbool MA, Aslam M, Akbar W, Iqbal Z. Biological importance of vitamins for human health : A review fat soluble vitamins: Vitamin D: Vitamin A. Agric. Basic Sci. 2017;2(3):50–58.

Cheng CH, Chang SJ, Lee BJ, Lin KL, Huang YC. Vitamin B6 supplementation increases immune responses in critically ill patients. Eur. J. Clin. Nutr. 2006;60(10): 1207–1213.
DOI: 10.1038/sj.ejcn.1602439

Maggini S, Wintergerst ES, Beveridge S, Hornig DH. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. 2019;3:29–35.
DOI: 10.1017/S0007114507832971

Rowley CA, Kendall MM. To B 12 or not to B 12: Five questions on the role of cobalamin in host-microbial interactions. PLoS Pathog. 2019;15(1):6–11.
DOI: 10.1371/journal.ppat.1007479

Rutten VP, Hoek A, Moll L, Wentink GH. The effect of cobalt supplementation on the immune response in vitamin B, deficient Texel lambs. 1996;55:151–161.

Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients. 2020; 12(1).
DOI: 10.3390/nu12010236

Crisp G, Camporeale G, White BR, Toombs CF, Said HM, Zempleni M. Biotin supply affects rates of cell proliferation, biotinylation of carboxylases and histones, and expression of the gene encoding the sodium-dependent multivitamin transporter in JAr choriocarcinoma cells. Eur. J. Nutr. 2004;43:23–31.

Baez-Saldana E, Ortega A. Biotin deficiency blocks thymocyte maturation, accelerates thymus involution and decreases nose-rump length in mice. J. Nutr. 2004;1(34):1970–1977.

Carr SM, Anitra C. Vitamin C and immune function nutrients. Nutrients. 2017;9:1211.
DOI: 10.3390/nu9111211

Liugan M. Vitamin C and neutrophil function: Findings from randomized controlled trials. Nutrients. 2019;11:2102.

Hemilä H. Vitamin C and infections. J. Nutrients. 2017;9:339.
DOI: 10.3390/nu9040339

Jacob RA, Kelley DS, Pianalto FS. Immunocompetence and oxidant defense during ascorbate depletion of healthy men. Am J Clin Nutr. 1991;54:1302S–9.

Bendich A. Carotenoids and immunity. Clin. Appl. Nutr. 1991;1:45-51.

Mora JR, Iwata M, Andrian V. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nature Reviews Immunology. Rev. Immunol. 2008;8(9): 685–698.

Azrielant S, Shoenfeld Y. Vitamin D and the immune system. Isr. Med. Assoc. J. 2017;19(8):510–511.
DOI: 10.231/JIM.0b013e31821b8755

Gombart AF. The vitamin D–antimicrobial peptide pathway and its role in protection against infection. Future Microbiology. 2009;4(9):1151–1165.
DOI: 10.2217/fmb.09.87

García de Tena J, El Hachem DA, Hernández GC, Izquierdo AJ. The role of vitamin d in chronic obstructive pulmonary disease, asthma and other respiratory diseases. Arch. Bronconeumol. 2014;50: 179–184.
DOI: 10.1016/j.arbr.2014.03.015

Gao DP, Bing C. 1,25-Dihydroxyvitamin D 3 inhibits the cytokine-induced secretion of MCP-1 and reduces monocyte recruitment by human preadipocytes. Int. J. Obes. 2013;37(3):357–365.
DOI: 10.1038/ijo.2012.53

Berry DJ, Hesketh K, Power C, Hyppo E. Vitamin D status has a linear association with seasonal infections and lung function in British adults. 2011;1:1433–1440.
DOI: 10.1017/S0007114511001991

Adit AD, Ginde M, Jonathan M, Mansbach, MD, Carlos A, Camargo J. Association between serum 25-Hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. 2009;169(4):384–390.

Goncalves-MN, Talvas J, Dual C, Guttmann A, Corbin V. Impact of vitamin D supplementation on influenza vaccine response and immune functions in deficient elderly persons: A randomized placebo-controlled trial. Front Immunol. 2019;10:65.

Nonnecke BJ, McGill JL, Ridpath JF, Sacco RE, Lippolis JD and Reinhardt TA. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. J. Dairy Sci. 2014;97(9):5566–5579.
DOI: 10.3168/jds.2014-8293

Meydani SN, Han SN, Wu D. Vitamin E and immune response in the aged: Molecular mechanisms and clinical implications. Immunol. Rev. 2005;205: 269–284.
DOI: 10.1111/j.0105-2896.2005.00274.x

Meydani SN, Leka LS, Fine BC, Dallal GE, Keusch GT, Singh MF, Hamer D. Vitamin E and respiratory tract infections in elderly nursing home residents: A randomized controlled trial J. Am. Med. Assoc. 2004;292(7):828–836.

Pae M, Meydani SN, Wu D. The role of nutrition in enhancing immunity in aging. 2012;3(1):91–129.

Pallast Esther G, Schouten Evert G, De Waart, Frouwkje G, et al. Effect of 50-and 100-mg vitamin E supplements on cellular immune function in noninstitutionalized elderly persons. The American Journal of Clinical Nutrition. 1999;69(6):1273-1281.

High KP. Nutritional strategies to boost immunity and prevent infection in elderly individuals. Clin. Infect. Dis. 2001;33(11): 1892–1900.
DOI: 10.1086/324509

Maggini S, Pierre A, Calder PC. Immune function and micronutrient requirements change over the life course. 2018;1.
DOI: 10.3390/nu10101531

Erkelens MN, Mebius RE. Retinoic acid and immune homeostasis: A balancing act. Trends Immunol. 2017;xx:1–13.
DOI: 10.1016/

Huang Z, Liu Y, Qi G, Brand D. Role of vitamin A in the immune system. 2018;1–16.
DOI: 10.3390/jcm7090258

Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: A brief overview. J. Inorg. Biochem. 2018;195:120–129.
DOI: 10.1016/j.jinorgbio.2019.03.013

Berdanier D, Carolyn D, Dwyer Johanna, Heber T. Handbook of nutrition and food. CRC Press. 2016;211-26. ISBN 978-1-4665-0572-8.

Teixeira AGV, Lima FS, Bicalho ML. Effect of an injectable trace mineral supplement containing selenium, copper, zinc and manganese on immunity, health and growth of dairy calves. J. Dairy Sci. 2014;97(7):4216–4226.
DOI: 10.3168/jds.2013-7625

Melinda AB. Antioxidants and viral infections: Host immune response and viral pathogenicity. J. Am. Coll. Nutr. 2020;384S-388S.
DOI: 10.1080/07315724.2001.10719.172

Nelson HK, Shi QV, Dael P, et al. Host nutritional selenium status as a driving force for influenza virus mutations. FASEB J. 2001;15:1727–38.

Hawkes WC, Turek PJ. Effects of dietary selenium on sperm motility in healthy men. J. Androl. 2001;22(5):764–772, 2001.
DOI: 10.1002/j.1939-4640.2001.tb02579.x

Dinh QT, Cui Z, Huang J, Tran TAT, Wang D, Yang W, Liang. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environment International. 2018;294- 309.

Rayman MP. Selenium and human health. Lancet. 2012;379(9822):1256–1268.
DOI: 10.1016/S0140-6736(11)61452-9

Wang ZJD, Hu B, Hu C, Zhu F, Liu X. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. Jama; 2020.
DOI: 10.1001/jama.2020.1585

Hasan R, Rink L, Haase H. Innate Immunity; 2012.
DOI: 10.1177/1753425912458815

Chandra RK. Nutrition and the immune system: An introduction. The American Journal of Clinical Nutrition. 1997;66(2): 460–4.

Kaushik N, Subramani C, Anang S, Muthumohan R, Nayak B, Ranjith K, et al. Zinc salts block hepatitis E virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase. J Virology. 2017;91(21).
DOI: 10.1128/JVI.00754-17

Uchide N, Ohyama K, Bessho T, Yuan B. Effect of antioxidants on apoptosis induced by influenza virus infection: Inhibition of viral gene replication and transcription with pyrrolidine dithiocarbamate. 2002;56:207–217.

Velthuis AJW, Van Worm S, Sims AC, Baric RS, Snijder EJ, Van MJH. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity In vitro and zinc ionophores block the replication of these viruses in cell culture. 2010;6(11).
DOI: 10.1371/journal.ppat.1001176

Kahmann L, Uciechowski P, Warmuth S, Plümäkers B, Gressner AM, Malavolta et al. Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions. 2008;11(1):8–10.
DOI: 10.1089/rej.2007.0613

Karimbakas J, Langkamp HB, Percival SS. Arrested maturation of granulocytes in copper deficient mice. J. Nutr. 1998;128(11):1855–1860.
DOI: 10.1093/jn/128.11.1855

Hopkins RG, Failla ML. Biochemical and molecular roles of nutrients copper deficiency reduces interleukin-2 (IL-2) production and IL-2 mRNA. J. Nutr. 1997;127:257–262.

Son EW, Lee SR, Choi HS, Koo HJ, Huh JE, Kim MH, Pyo S. Effects of supplementation with higher levels of manganese and magnesium on immune function. Arch. Pharm. Res. 2007;30(6): 743–749.
DOI: 10.1007/BF02977637

El-Mowafi ARA, Waagbø R, Maage. Effect of low dietary magnesium on immune response and osmoregulation of atlantic salmon. J. Aquat. Anim. Heal. 1997;9(1):8–17.

Wu N, Veillette A. Magnesium in a signalling role. Nature. 2011;475(462).

Ahluwalia N, Sun J, Krause D, Mastro A, Handte G. Immune function is impaired in iron-deficient, homebound, older women. Am. J. Clin. Nutr. 2004;79(3):516–521.
DOI: 10.1093/ajcn/79.3.516

Malan L, Baumgartner J, Calder PC, Zimmermann MB, Smuts CM. N-3 long-chain PUFAs reduce respiratory morbidity caused by iron supplementation in iron-deficient South African schoolchildren: A randomized, double-blind, placebo-controlled intervention. Am. J. Clin. Nutr. 2015;101(3):668–679.
DOI: 10.3945/ajcn.113.081208

Gutiérrez S, Svahn SL, Johansson ME. Effects of omega-3 fatty acids on immune cells. Int. J. Mol. Sci. 2019;20(20).
DOI: 10.3390/ijms20205028

Chang HY, Lee HN, Kim W, Surh YJ. Docosahexaenoic acid induces M2 macrophage polarization through peroxisome proliferator-activated receptor γ activation. Life Sci. 2015;120:39–47.
DOI: 10.1016/j.lfs.2014.10.014

Han L, Lei H, Tian Z, Wang X, Cheng D, Wang C. The immunomodulatory activity and mechanism of docosahexenoic acid (DHA) on immunosuppressive mice models. Food Funct. 2018;9(6):3254–3263.
DOI: 10.1039/c8fo00269j

Hardy H, Harris J, Lyon E, Beal J, Foey AD. Probiotics, prebiotics and immunomodulation of gut mucosal defences: Homeostasis and immunopathology. 2013;5(6).

Corthésy B, Gaskins HR, Mercenier A. Cross-talk between probiotic bacteria and the host immune system. J. Nutr. 2007;137(3):781S-790S.
DOI: 10.1093/jn/137.3.781s

Duncan SH, Flint HJ. Probiotics and prebiotics and health in ageing populations. Maturitas. 2013;75(1):44–50.
DOI: 10.1016/j.maturitas.2013.02.004

Gill HS, Rutherfurd KJ, Cross ML. Dietary probiotic supplementation enhances natural killer cell activity in the elderly: An investigation of age-related immunological changes. J. Clin. Immunol. 2001;21(4): 264–271.
DOI: 10.1023/A:1010979225018

Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol. Res. 2013;69(1):52–60.
DOI: 10.1016/j.phrs.2012.10.020

Hopkins MJ, Sharp R, Macfarlane GT. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut. 2001;48(2):198–205.
DOI: 10.1136/gut.48.2.198

Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P. Ageing and gut microbes: Perspectives for health maintenance and longevity. Pharmacol. Res. 2013;69(1):11–20.
DOI: 10.1016/j.phrs.2012.10.005

Panesar PS, Bali V. Prebiotics. Encycl. Food Heal. 2015;18(2):464–471.

Luying P, Zhong-RL, Robert S, Green IR, Holzman T. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 2009;139:1619–1625.

Trompette BJ, Gollwitzer A, Yadava K, Sichelstiel AK, Sprenger N, Ngom-B. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014;20(2):159-166.

Gourbeyre P, Denery S, Bodinier M. Probiotics, prebiotics and synbiotics: Impact on the gut immune system and allergic reactions. J. Leukoc. Biol. 2011;89(5):685–695.
DOI: 10.1189/jlb.1109753

Davis JM, Murphy EA, Carmichael MD. Effects of the dietary flavonoid quercetin upon performance and health. Curr. Sports Med. Rep. 2009;8(4):206–213.
DOI: 10.1249/JSR.0b013e3181ae8959

Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Yin Y. Quercetin, inflammation and immunity. Nutrients. 2016;8(3):1–14.
DOI: 10.3390/nu8030167

Jung JH, Kang JI, Kim HS. Effect of quercetin on impaired immune function in mice exposed to irradiation. Nutr. Res. Pract. 2012;6(4):301–307.
DOI: 10.4162/nrp.2012.6.4.301

Kaul TN, Middleton E, Ogra PL. Antiviral effect of flavonoids on human viruses. J. Med. Virol. 1985;15(1):71–79.
DOI: 10.1002/jmv.1890150110

Chen L, Li J, Luo C, Liu H, Xu W, Chen G, Jiang H. Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structure activity relationship studies reveal salient pharmacophore features. Bioorganic Med. Chem. 2006;14(24):8295–8306
DOI: 10.1016/j.bmc.2006.09.014

Mehrbod P, Amini E. Antiviral activity of garlic extract on Influenza virus. Iran. J. Virol. 2009;2(1):19–23.

Walder RACR, Kalvatchev Z, Garzaro D, Barrios M. In vitro suppression of HIV-l replication by ajoene [(e)-(z)-4,5,9-trithiadodeca-1,6,11-triene-9 oxide]. Biomed & Pharmacother. 1997;51(9):397–403.

Kyung KH. Antimicrobial properties of allium species. Curr. Opin. Biotechnol. 2012;23(2):142–147.
DOI: 10.1016/j.copbio.2011.08.004

Jayawardena R, Sooriyaarachchi P, Chourdakis M, Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes & Metabolic Syndrome: Clin. Res. Rev. 2020;6-59.